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Abstract

This paper presents discussions on predicting turbulence and heat transfer in two types of square sectioned U-bend

duct flows with mild and strong curvature by recent second moment closures. Batten et al.’s [AIAA J. 37 (1999) 785]

modified version of Craft and Launder’s [Int. J. Heat Fluid Flow 17 (1996) 245] two-component-limit (TCL) turbulence

model and Shima’s [Int. J. Heat Fluid Flow 19 (1998) 549] wall-reflection free model are presently focused on. They are

low-Reynolds-number models totally free from geometrical parameters. The former model is realizable and called the

TCL model. For turbulent heat flux, a higher order version of the generalized gradient diffusion hypothesis by Suga and

Abe [Int. J. Heat Fluid Flow 21 (2000) 37] is applied along with the TCL model. The results suggest that although both

second moment closures are generally good enough for predicting flow and heat transfer in the case of mild curvature,

only the realizable TCL model is reliable in the strong curvature case.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Turbulent heat and fluid flow through a passage with

curvature has been one of the primary interests in the

thermo-fluids engineering, particularly, associated with

heat exchangers and turbomachinery blading. Owing

to the curvature, pressure induced secondary motions

produce significant consequences in the turbulent strain

field and thus the level of heat transfer. To investigate

this kind of turbulent flow, Chang et al. [1] first mea-

sured the detailed turbulence structure in a square sec-

tioned U-bend duct flow with a mild curvature ratio:

Rc=D ¼ 3:357. The heat transfer characteristics in the

same geometry were measured by Johnson and Launder

[2] along with the flow field. These research works re-

vealed the existence of ‘‘camel back’’ shapes in the

streamwise mean velocity distribution of the curvature

section. They reported that those characteristic profiles

were results of strong secondary flow motions. With a

strong curvature ratio, the flow along the convex wall

becomes unstable and separates forming a complicated

recirculating flow region. Cheah et al. [3] measured the

turbulence structure in flows with such a strong curva-

ture ratio: Rc=D ¼ 0:65. This geometry is the same as

that of the heat transfer experiments by Davenport [4].

In order to predict such flow and thermal structure,

many numerical studies have been reported ([5–7], etc).

In the recent review of Iacovides and Launder [8], well

covering major numerical results, they concluded that a

low Reynolds number (LRN) model was far more reli-

able than bridging the wall functions. They also rec-

ommended the use of a second moment closure (SMC)

to predict duct flows despite the problems of wall-

reflection terms in modelling the pressure–strain correla-

tion. (It had been difficult to eliminate geometry oriented

parameters from the wall-reflection terms even though

such a parameter was hard to be determined in com-

plicated flow geometry.)

According to the recent progress in turbulence

modelling, we now have several more advanced LRN

SMCs such as the models proposed by Launder and

Tselepidakis [9], Hanjali�cc and Jakirli�cc [10], Craft and
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Launder [11] (the CL model), and Shima [12]. Amongst

them, the CL and the Shima models were designed to be

totally free from topographical parameters such as wall

normal distance and a wall normal vector. For industrial

applications, elimination of those parameters is very

much preferred because of the complexity of the flow

geometry.

To establish a full realizable LRN SMC, the UMIST

group has been developing a series of models [9,11,13]

based on the most general ‘‘cubic’’ quasi-isotropic (QI)

model for the pressure–strain term initially proposed by

Fu [14]. Those models have been developed considering

realizability of Reynolds stresses in two-component-limit

(TCL) turbulence which appear near wall and free sur-

face boundaries so that they are called the TCL SMCs.

One of the latest versions is the one by Batten et al. [15].

They extended the applicability of the CL model to

compressible flows by adding some minor changes and

thus their version was called the modified CL model.

On the other hand, the Shima model is based on the

much simpler quasi-linear model for the pressure–strain

term and it was well calibrated in flows near curved walls

[16]. As Shima himself admitted in the paper [12], it was

developed without considering full realizability. How-

ever, since the model works generally well in many flows,

it is certainly useful for engineering CFD despite its

theoretical flaws.

Although solving every component of the Reynolds

stress tensor requires more computational resources

than applying an eddy viscosity model (EVM), SMCs

are thought to be more general approach. In a cylin-

drical coordinate system, for example, it is well known

that curvature related terms are retained in the transport

equations of SMCs but not in those of EVMs. This

implies that the intrinsic curvature effects are in SMCs

without any special consideration for them. It is thus

useful for industrial engineers to provide the extensive

validation of the SMCs if there is no difficulty to apply

them for complicated flow fields. Since the modified CL

and the Shima models are LRN SMCs free from topo-

graphical parameters, they are easy to be applied for any

geometry, in principle. Thus, the performance of these

two models is of interest to the industrial CFD engi-

neers.

For the thermal field computation, the generalized

gradient diffusion hypothesis (GGDH) of Daly and

Harlow [17] is usually used to describe turbulent heat

flux in the context of SMCs. However, it is well known

that one cannot predict the streamwise heat flux compo-

nent reasonably well with it [18]. Although the stream-

wise component is unimportant for predicting the

thermal field in a fully developed flow parallel to a wall,

it does not necessarily mean that the streamwise com-

ponent is always unimportant.

Hence, there have been several proposals of new

turbulent heat flux models which have better accuracy

even for the streamwise component (e.g., [19,20]).

Amongst them, the model of Suga and Abe [21] has a

generally expanded form of the GGDH model with

introduction of higher order terms. This higher order

GGDH (HOGGDH) model was constructed in combi-

nation with nonlinear EVMs. However, since a GGDH-

type of heat flux model heavily relies on the predicted

turbulence anisotropy, it is reasonably expected that

coupling it with a SMC is more suitable to predict

complex thermal fields.

Nomenclature

aij anisotropic stress, ðuiuj=k � 2=3dijÞ
A Lumley’s stress flatness parameter, ð1�

ð9=8ÞðA2 � A3ÞÞ
A2 aijaij
A3 aijajkaki
dij diffusion term of Reynolds stress

D duct height

k turbulence energy

l turbulent length scale, ðk1:5=eÞ
Nu Nusselt number

Pij production term of Reynolds stress

Pr Prandtl number

Rc bend radius

Re bulk Reynolds number, ðUbD=mÞ
Rt turbulent Reynolds number, ðk2=ðmeÞÞ
S s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijSij=2

p
SI SijSjkSki=ðSlnSlnÞ3=2

Sij strain tensor, ðoUi=oxj þ oUj=oxiÞ
Ui mean velocity component

uiuj Reynolds stress

Ub bulk mean velocity

uih turbulent heat flux

e dissipation rate of k

eij dissipation rate of Reynolds stress

~ee e � 2mðo
ffiffiffi
k

p
=oxkÞðo

ffiffiffi
k

p
=oxkÞ

/ij pressure-strain term of Reynolds stress

Pij pressure correlation term of Reynolds

stress

h section angle or streamwise direction

H mean temperature

m kinematic viscosity

s, ~ss turbulent time scale, (k=e, k=~ee)
X s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XijXij=2

p
Xij vorticity tensor, ðoUi=oxj � oUj=oxiÞ
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Therefore, in order to update the information for

computing the flow and heat transfer in curved ducts,

this paper discusses the results by the modified CL and

the Shima SMCs in the square sectioned U-bend ducts

with the mild and strong curvature ratios (Rc=D ¼ 3:357,
0.65). The standard GGDH and the HOGGDH heat

flux models are coupled with those SMCs for turbulent

heat transfer. According to the fact that the GGDH-

type of heat flux model depends on the predicted stress

behaviour, minor modifications on the model coeffi-

cients or functions of both flow and heat flux models

have been occasionally tried to achieve their full po-

tential.

2. Turbulence models

In this paper, the full set of equations and coefficients

involved in the models are not described in detail unless

modifications are made in the present study. See the

original papers referred to for the details if necessary.

2.1. Flow field

2.1.1. Second moment closures

The transport equation of the Reynolds stress is

Duiuj
Dt

¼ dij þ Pij þ Pij � eij: ð1Þ

The pressure correlation, Pij, is usually split into the

pressure–diffusion and the pressure–strain, /ij, terms.

Whilst the former part is included in the turbulent dif-

fusion term in the traditional way of modelling, the

latter part is the ‘‘core’’ term to be focused on. There-

fore, there have been many proposals for /ij (e.g.,

[22,23]). However, in the wall-reflection terms, which

correspond to the surface integrals of the pressure fluc-

tuation, topographical parameters such as a wall normal

vector and the distance from a wall have been usually

used (e.g., [10,24,25]). Since those geometry oriented

terms are not preferable for complicated flow applica-

tions, Craft and Launder [11] and Shima [12] developed

LRN SMCs eliminating such wall-reflection terms.

The Shima model is based on the rather simple quasi-

linear model:

�eij þ /ij ¼ �2=3dije þ /ij1 þ /ij2; ð2Þ

/ij1 ¼ �c1eaij; ð3Þ

/ij2 ¼ �c2 Pij
�

� 1=3dijPkk
�
� c3 Dij

�
� 1=3dijDkk

�
� c4kSij; ð4Þ

where Pij ¼�ðuiukoUj=oxk þ ujukoUi=oxkÞ, Dij ¼ �ðuiuk�
oUk=oxj þ ujukoUk=oxiÞ. The terms /ij1 and /ij2 are the

slow re-distribution part and the rapid re-distribution

part of /ij, respectively. For the coefficients, Shima

introduced functional forms including Lumley’s [26]

stress flatness parameter, A, to apply the above model

for near-wall turbulence. Owing to vanishing of A in

two-component turbulence limits, A has been used to

detect near-wall turbulence in many LRN SMCs [9,

10,25]. The Shima model was successfully evaluated

in many 2-D flows near-curved walls [16]. However, the

coefficients, c1–c4, of the Shima model do not satisfy the

requirement for Green’s condition set forth by Launder

et al. [22] and thus the model is unrealizable as admitted

by Shima himself [12]. Therefore, any inconsistency with

theoretical behaviour of quantities (particularly, near a

wall) should be tolerated when the model is applied. (See

Shima [12] for the details of the model.)

Craft and Launder [11] employed a much more

complicated pressure–strain model after a series of de-

velopment for a full realizable TCL SMC by the UMIST

group [9,13]. The employed pressure–strain model is the

cubic QI model of Fu [14]. The CL model is the first

LRN version of its series totally free from topographical

parameters. Its re-distributive term was modelled as

/ij ¼ /ij1 þ /ij2 þ /inh
ij1 þ /inh

ij2 ; ð5Þ

where /inh
ij1 , /inh

ij2 are the correction terms for inhomoge-

neity effects. The cubic QI pressure–strain model em-

ploys the most general forms for /ij1 and /ij2 as

/ij1 ¼ �c1~ee aij

�
þ c01 aikajk

�
� 1

3
A2dij

��
� c001~eeaij; ð6Þ

/ij2 ¼ �0:6 Pij

�
� 1

3
Pkkdij

�
þ 0:3aijPkk

� 0:2
ujuk uiul

k
Skl

�
� ukul

k
uiuk

oUj

oxl

�
þ ujuk

oUi

oxl

��
� c2 A2 Pij

�	
� Dij

�
þ 3amianj Pmnð � DmnÞ



þ c02

7

15

��
� A2

4

�
Pij

�
� 1

3
dijPkk

�

þ 0:1 aij

�
� 1

2
aikakj

�
� 1

3
dijA2

��
Pkk

� 0:05aijaklPkl þ 0:1
uium
k

Pjm

��
þ ujum

k
Pim

�

� 2

3
dij
ulum
k

Plm

�
þ 0:1

uiul ujuk
k2

�

� 1

3
dij
ulum ukum

k2

�
6Dklð þ 13kSklÞ

þ 0:2
uiul ujuk

k2
Dklð � PklÞ

�
: ð7Þ

The inhomogeneity correction terms, /inh
ij1 , /inh

ij2 , effec-

tively replaced the traditional wall-reflection terms de-

fining inhomogeneity indicators which were basically the

gradients of turbulent length scales. This CL model is

realizable and validated in TCL turbulence boundaries
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[11]. Even though the model equations are very com-

plicated, it is thought to be rather economical because

the realizability contributes to rapid convergence of the

solution.

Recently, Batten et al. [15] of the UMIST group

modified the CL model and extended its applicability to

compressible flows. The present study thus broadly fol-

lows this modified version yet with some minor re-tuning

in the model functions. It is made to comply with the

theoretical near-wall behaviour of turbulence quantities:

A and e22 which has been found to be particularly crucial

in the HOGGDH heat flux model. The equations and

coefficients of the present version of the TCL model

(called the TCL SMC hereafter) are summarised in the

Appendix A.

2.2. Heat flux models

In complex turbulent thermal field computations, as

Launder [18] noted, the GGDH model of Daly and

Harlow [17]:

uih ¼ �chsuiuj
oH
oxj

; ð8Þ

is reasonably successful when near-wall turbulence an-

isotropy is captured. It is thus normally used along

with a SMC. However, it still rather under-predicts the

streamwise heat flux component [18].

In order to improve the performance of the GGDH

model, Suga and Abe [21] expanded the expression of

the GGDH model by introducing extra terms including

a quadratic product of the Reynolds stress tensor. They

showed that their HOGGDH heat flux model success-

fully reproduced each heat flux component in channel

flows at a wide range of fluid Prandtl numbers. The

model form may be written as

uih ¼ �chk~ssðrij þ aijÞ
oH
oxj

; ð9Þ

where the symmetric tensor rij contains linear and

quadratic terms as

rij ¼ cr1uiuj=k þ cr2uiul uluj=k2: ð10Þ

Inclusion of the quadratic term (the second term on the

rhs of Eq. (10)) is effective to predict the streamwise heat

flux component [27]. The asymmetric tensor aij was

modelled as

aij ¼ ca1~ss Xiluluj=k
�

þ Xljuiul=k
�
: ð11Þ

The proposed magnitude of the coefficient ch in the

HOGGDH model was especially for the nonlinear

EVMs, and thus the re-adjusted one for the SMCs is

ch ¼
0:4þ 0:2 expf�ðRt=175Þ3g

1� expf�ðA=0:05Þ2g
h i1=4 : ð12Þ

Note that this HOGGDH model complies with the lin-

earity and independence principles of scalar transport

set forth by Pope [28]. (See [21] for the details of the

other model coefficients.)

3. Results and discussions

As illustrated in Fig. 1, turbulent U-bend duct flows

with two different curvature ratios (Rc=D ¼ 3:357, 0.65)
are discussed to assess the model performance. The

computer program used is a cell vertex unstructured grid

code developed by Suga et al. [29]. It uses the third-order

MUSCL-type scheme for the convection terms while the

second-order central difference is applied for the other

terms.

The computational grids used extend up to the sym-

metry plane and consist of 121 ðstreamwiseÞ � 81ðxÞ�
41ðyÞ (with 1D inlet and 3D outlet tangents) and 151�
100� 50 (with 3D inlet and 9D outlet tangents) nodes

respectively for the cases of Rc=D ¼ 3:357 and 0.65. All

their first grid node points from the wall boundaries are

allocated within unity of the wall unit to ensure the

performance of LRN turbulence models. These compu-

tational grids presently employed are the same as those

used in the previous study [29]. They had been system-

atically verified to be good enough for grid independent

solutions.

For providing the inlet conditions, separate compu-

tations of fully developed straight duct flows have been

performed. The total CPU time required for the con-

vergence of a steady state computation by the TCL

SMC has been 4–5 times as long as that of the basic

LRN k–e model. The Shima model has needed a little

shorter CPU time than that of the TCL SMC though,

Fig. 1. Square sectioned 180� U-bend duct flows; (a) Rc=D ¼
3:357; (b): Rc=D ¼ 0:65.
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due to its unrealizability, some ad hoc treatments, such

as removing some model terms temporarily, have been

occasionally needed to stabilise the initial iterations.

3.1. U-bend duct of Rc=D ¼ 3:357

The considered air flow and thermal conditions are

the same as the experiments [1,2] and the bulk Reynolds

number is Re ¼ 56700. As in the experiments, the ther-

mal wall boundary condition is a constant wall heat flux

condition. In this case, no separating flow was observed

in the experiments.

3.1.1. Flow field

Fig. 2(a)–(d) compare the predicted streamwise mean

velocity distribution at the four streamwise sections of

h ¼ 45�, 90�, 130� and 177�, respectively. At each sec-

tion, the velocity distribution at 2y=D ¼ 0, 0.25, 0.5,

0.75 is plotted. (The symmetry plane corresponds to

2y=D ¼ 0 while the bottom or top wall corresponds to

Fig. 2. Streamwise mean velocity in the U-bend duct of Rc=D ¼ 3:357 at Re ¼ 56700.
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2y=D ¼ 1.) As shown in Fig. 2(a), some discrepancies

can be found between the experiments of Chang et al. [1]

and Choi et al. [30] in the centre region. Choi et al. also

measured the flow field of the same geometry as of

Chang et al. They reported that discrepancies similar to

those in Fig. 2(a) were also seen at the other sections.

This implies that such a level of experimental uncer-

tainty needs to be considered.

Fig. 3. Reynolds stresses in the U-bend duct of Rc=D ¼ 3:357 at h ¼ 90�.
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In Fig. 2(b), the results of the Gibson–Launder

model [24] produced by the earlier work of Iacovides

et al. [6] are plotted. (Since the Gibson–Launder model

is a high Reynolds number model, Iacovides et al. used

the mixing length hypothesis for the near-wall sublayer.)

It is obvious that the performance of the presently con-

sidered wall-reflection free LRN SMCs (the TCL and

the Shima models) is comparable to that of the Gibson–

Launder model which includes the wall-reflection terms.

This confirms that the modelling without wall-reflection

terms is successful in such a 3-D flow field.

Although the agreement between the predictions and

the experiments is not perfect, both LRN SMCs gener-

ally reproduce well the characteristic velocity distribu-

tion of the experiments. Particularly, as shown in Fig.

2(b)–(c), the main characteristic of this flow is the ap-

pearance of the camel back shapes in the velocity dis-

tribution. These shapes are the results of loss of the

streamwise momentum due to the secondary flow

forming a strong downward motion from the symmetry

plane to the bottom (or top) wall [2]. Both models suc-

cessfully reproduce these characteristic profiles while the

TCL model performs slightly better than the Shima

model, particularly at the h ¼ 90� section.
Fig. 3(a)–(c) respectively show the distribution of the

Reynolds shear stress: uhur and the normal stresses: u2h,
u2r at the h ¼ 90� section. Although the predicted shear

stress distribution accords with the experiments accept-

ably, both models fail to reproduce the experimental

profiles of normal stresses correctly, particularly in the

regions where the experiments show kink profiles cor-

responding to the dents in the mean velocity distribu-

tion. This suggests that both models still need to be

improved for the stress behaviour. Furthermore, as Fig.

3(b) shows, the TCL SMC somehow under-predicts the

streamwise normal stress: u2h in the outer side region

ðx=D > 0:5Þ while Fig. 3(c) shows that the Shima model

tends to over-predict the wall normal stress: u2r there.

This latter predictive tendency of the Shima model af-

fects its heat transfer prediction discussed in the next

subsection. (Note that the TCL SMC’s profiles of u2h
correspond better with Choi et al.’s experiments, par-

ticularly at 2y=D ¼ 0, 0.25. This implies that the accu-

racy of the TCL SMC for the streamwise stress may be

appropriate.)

3.1.2. Heat transfer

Before discussing the U-bend duct heat transfer, the

performance of the standard GGDH (simply called the

GGDH model hereafter) and the HOGGDH heat flux

models is discussed. Fig. 4 compares the local Nu dis-

tribution of the fully developed flow in a straight square

duct by the SMCs with the GGDH and the HOGGDH

models. As in the DNS by Fukushima and Kasagi [31], a

constant wall temperature condition is employed. The

HOGGDH model is only coupled with the TCL SMC

simply because the HOGGDH model cannot work with

the Shima model. It seems to require significant fur-

ther development to have a tailor-made version of the

HOGGDH for the Shima model. The major reason is

that the Shima model produces an incorrect wall value

(about 0.1) of A, while it should fall to zero according to

the near-wall variation A / y2. This incorrect wall lim-

iting behaviour results in the wrong variation of the

model functions including A in the HOGGDH model.

Fig. 4. Local Nusselt number distribution in the square sec-

tioned duct at Re ¼ 4500 and Pr ¼ 0:71.

Fig. 5. Local Nusselt number distribution in the U-bend duct

flow of Rc=D ¼ 3:357 at Re ¼ 56700 and Pr ¼ 0:71; expt.:

Johnson and Launder [2].
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As shown in Fig. 4, the combination of the TCL SMC

and the HOGGDH improves the result of the combi-

nation of the TCL SMC and the GGDH in the region

near the side wall ðx=D ¼ 0Þ while it gets slightly worse

in the region of x=D > 0:3. The HOGGDH model thus

produces a better overall heat transfer rate. Although

the standard value of ch in the GGDH model is 0.3, the

use of 0.18 has been found to be the most reasonable to

be coupled with the Shima model after several other test

runs for channel flow cases. Consequently, the HOG-

GDH model is used for the TCL SMC while the GGDH

model with ch ¼ 0:18 is used for the Shima model in the

following discussions.

In Fig. 5, the predicted local Nu distribution at the

sections of h ¼ 0�, 45�, 90�, 135� and 180� is compared

with the experiments of Johnson and Launder [2]. The

levels of general agreement between the models and the

experiments are fairly reasonable though some discrep-

ancies can be found. In some regions (at h ¼ 45�, 90� of
the outer wall, etc.) the TCL SMC with the HOGGDH

performs slightly better but in the other regions (at

h ¼ 135� of the inner wall and at h ¼ 180� of the outer

wall, etc.) the Shima model with the GGDH works

slightly better. However, particularly along the outer

wall of the section of h ¼ 90�, the Shima model predicts

rather high heat transfer. This is the consequence of the

over-prediction of the wall normal stress in the outer

region which is obvious in Fig. 3(c). The detailed dis-

cussion about the reason for this failure is addressed in

the next section since this tendency is amplified in the

stronger curvature case.

3.2. U-bend duct of Rc=D ¼ 0:65

In the stronger curvature case, the considered bulk

Reynolds number is Re ¼ 105. Following the experi-

ments [3,4], air flow heat transfer is considered with a

constant wall heat flux boundary condition. In this case,

a separating flow appears along the suction side unlike

in the milder curvature case.

3.2.1. Flow field

Fig. 6 compares the predicted streamwise mean ve-

locity distribution with the experiments of Cheah et al.

[3]. Along the symmetry plane, Fig. 6(a), the TCL and

the Shima models successfully reproduce the experi-

mental distribution while the magnitude of the reverse

flow at h ¼ 180� is slightly under-predicted. Obviously,

both the models significantly improve the results of the

LRN algebraic second moment closure (ASM) produced

by the earlier work of Iacovides et al. [7]. Although they

did not perform a full SMC, their version of the ASM

Fig. 6. Streamwise mean velocity in the U-bend duct of Rc=D ¼ 0:65 at Re ¼ 105; (a) symmetry plane ð2y=D ¼ 0Þ; (b) near-wall plane
ð2y=D ¼ 0:75Þ.
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was based on the Gibson–Launder model [24] and thus

it included the wall-reflection terms. This highlights that

the recently emerged wall-reflection free LRN SMCs are

more reliable to predict such a complicated flow field

than the earlier approach.

Along the near-wall plane of 2y=D ¼ 0:75, Fig. 6(b),
the agreement of the TCL and the Shima models with

the experiment in the inner region ðx=D < 0:5Þ of the

downstream section ðz=DP 1:0Þ is somewhat poor. Al-

though some differences can be found between the two

Fig. 7. Reynolds stresses along the symmetry plane of the U-bend duct of Rc=D ¼ 0:65.
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models, their performance in the streamwise mean ve-

locity distribution is nearly the same.

Fig. 7 shows the distribution of Reynolds stress

components along the symmetry plane. The profiles of

the Reynolds shear stress: uhur and the normal stresses:

u2h, u2r are respectively compared in Fig. 7(a)–(c). As

shown in Fig. 7(a), only at the section of z=D ¼ 1, the

Shima model predicts better than the TCL SMC though

somehow both models significantly under-predict the

level of the shear stress there. At the curvature section

(90�6 h6 180�), the TCL SMC reasonably predicts the

Reynolds shear stress while the Shima model seems to be

rather unreliable in the outer region ðx=D > 0:5Þ. This
unsatisfactory performance of the Shima model is

thought to be the consequence of its wall normal stress

behaviour discussed below.

As in Fig. 7(b) and (c), although the predicted peak

levels of the normal stresses by the TCL SMC are rather

inaccurate at the sections of h ¼ 135�, 180� and z=D ¼ 1,

the results of the TCL SMC are reasonably acceptable.

The Shima model performs generally similarly to the

TCL SMC, but it unrealistically over-predicts the wall

normal stress: u2r toward the outer wall in the curvature

section as shown in Fig. 7(c). This tendency (though less

strong) has been also pointed out in the mild curvature

case. Since the Shima model was well calibrated in

curvature flows [16], the reason of this puzzling behav-

iour needs to be understood.

Unlike fully developed curved flows, the U-bend duct

flows also include effects of normal straining produced

by the inertial momentum towards the outer wall due to

the sharp turning. This is readily understood when one

notices the increase of the magnitude of the mean ve-

locity near the outer wall shown in Fig. 6. It is thus

helpful to consider a basic normal straining flow. Fig. 8

compares the evolution of the Reynolds stresses against

the normalised time: t� ¼ tðSijSji=2Þ1=2 in an axisym-

metric expansion flow of Lee and Reynolds [32]. The

Shima model predicts that the Reynolds normal stresses

gradually deviate from the DNS data while the TCL

SMC keeps good agreement with the data. The normal

strain: oU=ox of the axisymmetric expansion is negative

and corresponds to oUr=or in the bend section. Thus, the

behaviour of u2=k in the axisymmetric expansion ex-

plains that the Shima model tends to predict too high

normal stress: u2r if the normal strain is high due to the

sharp turn.

3.2.2. Heat transfer

Fig. 9 shows the predicted section-mean Nusselt

number distribution compared with the experiments of

Davenport [4]. Although it is not very successful, the

predictive performance for the Nu distribution by the

TCL SMC and the HOGGDH model is generally rea-

sonable along each wall. However, the combination of

the Shima model and the GGDH model shows unreal-

istically high level of heat transfer along the outer wall

while the level is acceptable along the inner wall.

In the near-wall region, the wall normal turbulent

heat flux is estimated by the GGDH model as

vh ¼ �chsv2
oH
oy

: ð13Þ

This suggests that the higher the wall normal stress is

predicted, the higher the predicted heat transfer be-

comes. Thus the unrealistically high level of the outer

wall heat transfer by the Shima model is the conse-

quence of its over-prediction of the wall normal stress.

Fig. 8. Development of Reynolds stresses in the axisymmetric

expansion; solid curves: TCL SMC; broken curves: Shima;

symbols: DNS of Lee and Reynolds [32].

Fig. 9. Section-averaged Nusselt number distribution of the U-

bend duct of Rc=D ¼ 0:65 at Re ¼ 105 and Pr ¼ 0:71; expt.:

Davenport [4].
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(Note that to remedy this ill behaviour, the present study

has also tried in vain to include an extra source term in

the dissipation equation proposed by Iacovides and

Raisee [33].)

4. Conclusions

In the present study, the performance of two versions

of the wall-reflection free low-Reynolds-number second

moment closures (the TCL SMC and the Shima model)

has been validated in 3-D U-bend ducts with the mild

and strong curvatures (Rc=D ¼ 3:357, 0.65). For the

turbulent heat transfer fields, the standard and the

higher order GGDH heat flux models have been re-

spectively coupled with the Shima and the TCL SMCs.

The following remarks are concluded.

(1) The prediction by the TCL SMC is generally reli-

able for the flow fields in the U-bend ducts with

both curvature ratios though some margins for im-

provement are still remained in the stress fields. Its

overall performance is better than the one by the

Shima model.

(2) The HOGGDH heat flux model produces reliable

level of heat transfer in the present complicated

cases when it is coupled with the TCL SMC.

(3) The Shima model performs comparably to the TCL

SMC in the milder curvature case. However, in the

stronger curvature case, it excessively over-predicts

the wall normal stress along the outer wall, due to

the strong normal straining caused by the sharp

turning. This ill behaviour in the normal straining

leads to the unrealistically high level of heat trans-

fer.

Appendix A. TCL second moment closure

The model equations of the presently used modified

CL model are summarised below.

As noted in Section 2.1.1 The CL model splits the

pressure correlation term as

Pij ¼ /ij þ
uiuj
k

d
p
k ; ðA:1Þ

where the second term on the rhs of the equation is re-

garded as a model of the pressure diffusion of uiuj de-
fining the pressure diffusion of the turbulent kinetic

energy as dpk ¼ �ð1=2qÞðopuk=oxkÞ. The modelled puk is

puk ¼ �qcpdð0:5dk þ 1:1dAk ÞðmekAA2Þ1=2; ðA:2Þ

where di is the inhomogeneity indicator:

di ¼
Ni

0:5þ ðNkNkÞ1=2
; Ni ¼

ol
oxi

: ðA:3Þ

The present magnitude of the coefficient is slightly

modified as

cpd ¼ 1:5ð1� A2Þ½f1þ 2 expð�Rt=40ÞgA2

þ 0:4R�1=4
t expð�Rt=40Þ�: ðA:4Þ

The re-distributive part is modelled as Eqs. (5)–(7). For

the inhomogeneity correction terms, Batten et al. [15]

simplified the forms as

/inh
ij1 ¼ fw1

e
k

ulukdAl d
A
k dij

�
� 3

2
uiukdAj d

A
k �

3

2
ujukdAi d

A
k

�

þ fw2
e
k2

umun umuldAn d
A
l dij

�
� 3

2
uium umuldAj d

A
l

� 3

2
ujum umuld

A
i d

A
l

�
; ðA:5Þ

/inh
ij2 ¼ fIk

oUl

oxn
dldn didj

�
� 1

3
dkdkdij

�
ðA:6Þ

with

dAi ¼ NA
i

0:5þ ðNA
k N

A
k Þ

1=2
; NA

i ¼ oðlA1=2Þ
oxi

: ðA:7Þ

The presently used coefficients are mostly followed

Batten et al. [15], but some are slightly re-tuned as in

Table 1 to balance with the change for the compliance of

the behaviour of A with the theoretical one.

For the turbulent diffusion process, although the

original CL model employs an ASM procedure for the

Table 1

Model coefficients and functions in the TCL second moment closure

c1 ¼ 3:2fA
ffiffiffiffiffi
A2

p
fRt c2 ¼ min

h
0:55

n
1� exp

��A3=2Rt
100

�o
; 3:2A
1þ S

i
c01 ¼ 1:1 c02 ¼ minð0:6;

ffiffiffi
A

p
Þ þ fS

fw1 ¼ 3ð1�
ffiffiffi
A

p
Þf 0

Rt
fw2 ¼ 0:6A2ð1�

ffiffiffi
A

p
Þf 00

Rt
þ 0:1 c001 ¼ A1=2 fRt ¼ min

n
Rt
200

� �2
; 1
o

fA ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=14

p
, A6 0:05 f 0

Rt
¼ min 1;max 0; 1� Rt � 55

70

� �n o
fI ¼ 3fA f 00

Rt
¼ min 1;max 0; 1� Rt � 50

200

� �n o

¼ A=
ffiffiffiffiffiffiffi
0:7

p
, 0:05 < A < 0:7 fR ¼ ð1� AÞminfðRt=80Þ2; 1g f� ¼ 20A3=2, A6 0:05

¼
ffiffiffi
A

p
, AP 0:7 fS ¼ 3:5ðS � XÞ

3þ S þ X � 4
ffiffiffi
6

p
minðSI ; 0Þ ¼

ffiffiffi
A

p
, A > 0:05
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triple moments, Batten et al. returned to the usual

GGDH model of Daly and Harlow [17]:

dij ¼
o

oxk
mdkl

��
þ 0:22ukul

k
e

�
ouiuj
oxl

�
: ðA:8Þ

The dissipation tensor is modelled as

eij ¼ ð1� feÞðe0ij þ e00ijÞ=Dþ 2
3
dijfee ðA:9Þ

with

e0ij ¼ 2m
o
ffiffiffi
k

p

oxm

o
ffiffiffi
k

p

oxi

ujum
k

 
þ o

ffiffiffi
k

p

oxj

uium
k

!

þ 2m
o
ffiffiffi
k

p

oxk

o
ffiffiffi
k

p

oxm

ukum
k

dij þ
uiuj
k

e; ðA:10Þ

e00ij ¼ fRe 2
uluk
k

dAl d
A
k dij

�
� uiul

k
dAl d

A
j � ujul

k
dAl d

A
i

�
;

ðA:11Þ

where D ¼ ðe0kk þ e00kkÞ=ð2eÞ. Batten et al.’s modified ver-

sion uses fe ¼
ffiffiffi
A

p
, however it does not lead to the cor-

rect near-wall limiting behaviour of e22ð/ yþ2Þ. The

present study has experienced that this is important to

obtain the correct near-wall behaviour of Að/ yþ2Þ
which is expected in some model functions. The present

study thus modifies it as

fe ¼ 20A1:5ðA6 0:05Þ ¼
ffiffiffi
A

p
ðA > 0:05Þ: ðA:12Þ

The transport equation for the isotropic dissipation rate
~ee is modelled as

D~ee
Dt

¼ o

oxk
mdkl

�(
þ 0:18ukul

k
e

�
o~ee
oxl

)
þ ce1

Pkk
2

~ee
k

� ce2
~ee2

k
� ðe � ~eeÞ~ee

k
þ Pe3 þ YE; ðA:13Þ

where ce1 ¼ 1:0, ce2 ¼ 1:92=ð1þ 0:7AA1=2
d Þ, Ad ¼ minðA2;

0:4Þ and

Pe3 ¼ 0:7muiuj
k
e
o2Uk

oxioxl

o2Uk

oxjoxl
: ðA:14Þ

The length-scale correction term of Iacovides and Raisee

[33]:

YE ¼ 0:83
~ee2

k
maxfF ðF þ 1Þ2; 0g ðA:15Þ

is employed with

F ¼ 1

cl

ol
oxj

ol
oxj

� �1=2

� f1� expð�BeRtÞ

þ BeRt expð�BeRtÞg; ðA:16Þ

cl ¼ 2:55 and Be ¼ 0:1069.
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